Калькулятор дробей

Калькулятор дробей


Калькулятор дробей выполняет основные арифметические действия с дробями и смешанными числами.

Если целая часть заполнена, калькулятор приведет смешанное число в неправильную дробь и выполнит операцию.

Заполните поля калькулятора чтобы найти сумму, разность, произведение и отношение дробей.

Основные операции с дробями

Сложение и вычитание

Чтобы сложить дроби необходимо: привести дробные части к наименьшему общему знаменателю; затем сложить их числители. Рассмотрим на примере как сложить две дроби с разными знаменателями.

Пример Сложить дроби дробь одна восьмая и дробь пять шестых

результат сложения дробей одна восьмая плюс дробь пять шестых.

Наименьшее общее кратное знаменателей (8 и 6) равно 24.

Для нахождения разности дробей необходимо: привести дробные части к наименьшему общему знаменателю; затем выполнить вычитание числителей.

Пример Найти разность дробей дробь девять шестнадцатых и семть двадцатых

разность дробей девять шестнадцатых минус семь двадцатых.

Общее кратное знаменателей НОК(16, 20)=80. Для вычисления наименьшего общего кратного можно воспользоваться калькулятором. Калькулятор вычислит НОК автоматически.

Умножение и деление

Для умножения двух дробей нужно: перемножить их числители и знаменатели правило умножения дробей.

Пример Найти произведение дробей дробь семь восемнадцатых и дробь три четвертых

умножение дробей: семь восьмых на три четвертых.

Чтобы разделить дробь на другую нужно: умножить первую дробь на дробь, обратную второй: деление дробей.

Пример Разделить дробь дробь четыре пятых на дробь три десятых

деление дробей четыре пятых на три десятых.

Приведение к общему знаменателю

Чтобы совершать операции с дробями часто требуется привести дроби к общему знаменателю. Рассмотрим процесс приведения двух дробей дробь три восьмых и пять двенадцатых к наименьшему общему знаменателю :

  • 1 Находим наименьшее общее кратное знаменателей: НОК(8, 12)=24. Число 24 является наименьшим общим знаменателем двух дробей, приведем обе дроби к данному знаменателю. Любые две дроби можно привести к одинаковому знаменателю.
  • 2 Вычисляем дополнительный множитель первой дроби вычисляем дополнительный множитель для дроби 3/8. Умножаем числитель и знаменатель на дополнительный множитель 3, получаем дробь дробь 3/8 преобразуем в 9/24 путем умножения на 3.
  • 3 Вычислим дополнительный множитель второй дроби вычисляем дополнительный множитель для дроби 5/12. Умножаем числитель и знаменатель на дополнительный множитель 2, получаем дробь дробь 5/12 преобразуем в 10/24 путем умножения на 2.
  • 4 В результате получим дроби дробь 9/24 и дробь 10/24 с одинаковым знаменателем равным 24.
Пример Сравнить дроби дробь семь восемнадцатых и дробь три четвертых

Для сравнения дробей приведем их к общему знаменателю и сравним их числители. Воспользуемся шагами описанными выше и найдем наименьшее общее кратное знаменателей дробей и далее преобразуем:

сравнение дробей: 7/18 и 3/4.

НОК(18, 4)=36, дополнительный множитель первой дроби дополнительный множитель дроби 7/18, доп. множитель второй дроби дополнительный множитель дроби 3/4.

Основное свойство дроби

Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.